Trees

9/2/2002 3:15 AM

Trees

Make Money Fast!

Ponzi
Scheme

Bank
Robbery

9/2/2002 3:15 AM Trees

Outline and Reading

Tree ADT (82.3.1)

Preorder and postorder traversals (§2.3.2)
% BinaryTree ADT (82.3.3)

4 |norder traversal (82.3.3)

Euler Tour traversal (§2.3.3)

Template method pattern

@ Data structures for trees (§2.3.4)

4 Java implementation (http://jdsl.org)

9/2/2002 3:15 AM Trees 2

‘What is a Tree

% In computer science, a
tree is an abstract model
of a hierarchical
structure

@ A tree consists of nodes
with a parent-child

Computers”’R"Us

Manufacturing

relation
% Applications:

[International] [Laptops] [Desktops]

= Organization charts

= File systems

= Programming
environments

9/2/2002 3:15 AM Trees

Tree Terminology

Root: node without parent (A)
4 Internal node: node with at least
one child (A, B, C, F)
External node (a.k.a. leaf): node
without children (E, I, J, K, G, H, D)
Ancestors of a node: parent,
grandparent, grand-grandparent,
etc.
Depth of a node: number of
ancestors
Height of a tree: maximum depth
of any node (3)
Descendant of a node: child,
grandchild, grand-grandchild, etc.

4 Subtree: tree consisting of
a node and its
descendants

4

subtree

*

9/2/2002 3:15 AM Trees 4

‘Tree ADT

"~ # Weuse positions to abstract
nodes
4 Generic methods:
= integer size()
= boolean isEmpty()
= objectlterator elements()
= positionlterator positions()
@ Accessor methods:
= position root()
= position parent(p)
= positionlterator children(p)

9/2/2002 3:15 AM Trees

4 Query methods:
= boolean isInternal(p)
= boolean isExternal(p)
= boolean isRoot(p)
Update methods:
= swapElements(p, q)
= object replaceElement(p, o)
Additional update methods
may be defined by data
structures implementing the
Tree ADT

Preorder Traversal

@ A traversal visits the nodes of a
tree in a systematic manner

In a preorder traversal, a node is
visited before its descendants
@ Application: print a structured

document
1
Make Money Fast!

Algorithm preOrder(v)
visit(v)
for each child wof v
preorder (w)

2

1. Motivations [2. Methods] [References]

3 4 ’
o 2.1 Stock 2.2 Ponzi 2.3 Bank
G (o) (i)
9/2/2002 3:15 AM Trees 6

Trees

Postorder Traversal

% In a postorder traversal, a
node is visited after its

Algorithm postOrder (v)
for each child w of v

descendants
4 Application: compute space postOrder (w)
used by files in a directory and visit(v)

its subdirectories

homeworks/

1
hilc.doc hinc.doc DDR.java Stocks.java Robot.java
3K 2K 10K 25K 20K

9/2/2002 3:15 AM Trees 7

9/2/2002 3:15 AM

‘Binary Tree

A binary tree is a tree with the + Applications:
following properties:
= Each internal node has two
children
= The children of a node are an
ordered pair
We call the children of an internal
node left child and right child
Alternative recursive definition: a
binary tree is either
= a tree consisting of a single node,
or
= atree whose root has an ordered
pair of children, each of which is a
binary tree

= arithmetic expressions
= decision processes
= searching

9/2/2002 3:15 AM Trees 8

Arithmetic Expression Tree

Binary tree associated with an arithmetic expression
= internal nodes: operators
= external nodes: operands

4 Example: arithmetic expression tree for the
expression (2 x (a — 1) + (3 x b))

9/2/2002 3:15 AM Trees 9

Decision Tree

Binary tree associated with a decision process
= internal nodes: questions with yes/no answer
= external nodes: decisions

Example: dining decision

Want a fast meal?

Yes No

[How about coffee?] [On expense account?]

Yes No Yes No

|Starbucks| |Spike’s| |AI Fornol |Café Paragonl

9/2/2002 3:15 AM Trees 10

Properties of Binary Trees

4 Notation # Properties:
n number of nodes me=i+1
e number of s n=2¢=1
external nodes g
i number of internal = h<i
nodes h<(n-1)/2
h height eg2h

hzlog, e
hzlog,(n+1) -1

9/2/2002 3:15 AM Trees 11

‘BinaryTree ADT

The BinaryTree ADT @ Update methods
extends the Tree may be defined by
ADT, i.e., it inherits data structures
all the methods of implementing the
the Tree ADT BinaryTree ADT

Additional methods:

= position leftChild(p)
= position rightChild(p)
= position sibling(p)

9/2/2002 3:15 AM Trees 12

Trees

9/2/2002 3:15 AM

Inorder Traversal

Algorithm inOrder(v)
if islnternal (v)

% In an inorder traversal a
node is visited after its left
subtree and before its right

subtree inOrder (leftChild (v))
Application: draw a binary visit(v)
tree

if isinternal (v)
inOrder (rightChild (v))

= X(v) = inorder rank of v
= y(v) = depth of v 6

9/2/2002 3:15 AM Trees 13

Print Arithmetic Expressions

Specialization of an inorder Algorithm printExpression(v)

traversal if isinternal (v)
= print operand or operator A)
when visiting node p”m(()
= print “(“ before traversing left i i
LA ' inOrder (leftChild (v))
= print “)* after traversing right print(v.element ()
subtree

if isinternal (v)
inOrder (rightChild (v))
print (*)")

((@2x(a-1)+(@xb)

9/2/2002 3:15 AM Trees 14

‘Evaluate Arithmetic Expressions

Specialization of a postorder | Algorithm evalExpr(v)
traversal if isExternal (v)
return v.element ()

= recursive method returning
the value of a subtree dse

= Wwhen visiting an internal
node, combine the values
of the subtrees

X « evalExpr(leftChild (v))
y « evalExpr(rightChild (v))
¢ ~ operator stored at v
returnx 0y

9/2/2002 3:15 AM Trees 15

Euler Tour Traversal

Generic traversal of a binary tree
Includes a special cases the preorder, postorder and inorder traversals
% Walk around the tree and visit each node three times:

= on the left (preorder)

= from below (inorder)

= on the right (postorder) N “

\

9/2/2002 3:15 AM Trees 16

‘Template Method Pattern

‘& Generic algorithm that public abstract class EulerTour {
can be specialized by protected BinaryTree tree;
redefining certain steps protected void visitExternal(Position p, Result r) {}
4 Implemented by means of protected void visitLeft(Position p, Resultr) {}
an abstract Java class protected void visitBelow(Position p, Resultr) { }
s protected void visitRight(Position p, Resultr) { }
+ :/(;fjlé fmzahggssﬁliﬁ;géfe protected Object eulerTour(Position p) {
Resultr = new Result();

4 Template method eulerTour if tree.isExternal(p) { visitExternal(p, r); }
= Recursively called on the else {
left and right children visitLeft(p,);
= A Result object with fields rleftResult = eulerTour(tree.leftChild(p));
leftResult, rightResult and visitBelow(p, r);
finalResult keeps track of r.rightResult = eulerTour(tree.rightChild(p));

the output of the ViSIRIght(p, 1);

recursive calls to eulerTour
return r.finalResult;

9/2/2002 3:15 AM Trees 17

‘Specializations of EulerTour

public class EvaluateExpression
extends EulerTour {

4 We show how to
specialize class
EulerTour to evaluate protected void visitExternal(Position p, Result r) {
an arithmetic r.finalResult = (Integer) p.element();
expression

Assumptions

= External nodes store

Integer objects

Internal nodes store

Operator objects

supporting method

operation (Integer, Integer)

protected void visitRight(Position p, Resultr) {
Operator op = (Operator) p.element();
rfinalResult = op.operation(
(Integer) r.leftResult,
(Integer) r.rightResult

9/2/2002 3:15 AM Trees 18

Trees

Data Structure for Trees

) # A node is represented by

an object storing
= Element
= Parent node

= Sequence of children
nodes

9/2/2002 3:15 AM

4 Node objects implement
the Position ADT

Data Structure

4 A node is represented

by an object storing
= Element
= Parent node
= Left child node
= Right child node

for Binary Trees

duak
[o]
v

B

Node objects implement [I:I |—4I|]
the Position ADT

re | o

9/2/2002 3:15 AM

> <

Trees 20

extending Tree V
Classes implementing Tree

and BinaryTree and

providing

= Constructors

= Update methods

= Print methods
4 Examples of updates for

binary trees o

= expandExternal(v)
= removeAboveExternal(w) E

9/2/2002 3:15 AM Trees

9/2/2002 3:15 AM Trees 19
Java Implementation

@ Tree interface expandExternal(v)

4 BinaryTree interface v

removeAboveExternal (W)

21

‘Trees in JDSL

JDSL is the Library of Data
Structures in Java
Tree interfaces in JDSL
= InspectableBinaryTree
= InspectableTree
= BinaryTree
= Tree
Inspectable versions of the
interfaces do not have
update methods
Tree classes in JDSL
= NodeBinaryTree
= NodeTree

9/2/2002 3:15 AM

JDSL was developed at
Brown’s Center for Geometric
Computing

See the JDSL documentation
and tutorials at http://jdsl.org

InspectableTree

InspectableBinaryTree

Trees 22

