Abstract Data Types (ADTs)

An abstract data type (ADT) is an abstraction of a data structure.

An ADT specifies:
- Data stored
- Operations on the data
- Error conditions associated with operations

Example: ADT modeling a simple stock trading system
- The data stored are buy/sell orders
- The operations supported are:
 - order buy(stock, shares, price)
 - order sell(stock, shares, price)
 - void cancel(order)
- Error conditions:
 - Buy/sell a nonexistent stock
 - Cancel a nonexistent order

The Stack ADT

The Stack ADT stores arbitrary objects.
- Insertions and deletions follow the last-in first-out scheme.
- Think of a spring-loaded plate dispenser.

Main stack operations:
- push(object): inserts an element
- object pop(): removes and returns the last inserted element

Auxiliary stack operations:
- object top(): returns the last inserted element without removing it
- integer size(): returns the number of elements stored
- boolean isEmpty(): indicates whether no elements are stored

Exceptions

Attempting the execution of an operation of ADT may sometimes cause an error condition, called an exception.

Exceptions are said to be “thrown” by an operation that cannot be executed.

In the Stack ADT, operations pop and top cannot be performed if the stack is empty.

Attempting the execution of pop or top on an empty stack throws an EmptyStackException.

Applications of Stacks

Direct applications:
- Page-visited history in a Web browser
- Undo sequence in a text editor
- Chain of method calls in the Java Virtual Machine

Indirect applications:
- Auxiliary data structure for algorithms
- Component of other data structures

Outline and Reading

- The Stack ADT (§2.1.1)
- Applications of Stacks (§2.1.1)
- Array-based implementation (§2.1.1)
- Growable array-based stack (§1.5)
Method Stack in the JVM

- The Java Virtual Machine (JVM) keeps track of the chain of active methods with a stack.
- When a method is called, the JVM pushes on the stack a frame containing:
 - Local variables and return value
 - Program counter, keeping track of the statement being executed
- When a method ends, its frame is popped from the stack and control is passed to the method on top of the stack.

```
main() {
    int i = 5;
    foo(i);
}
foo(int j) {
    int k;
    k = j + 1;
    bar(k);
}
bar(int m) {
    ...
}
```

Array-based Stack

- A simple way of implementing the Stack ADT uses an array.
- We add elements from left to right.
- A variable keeps track of the index of the top element.

```
Algorithm size() {
    return t + 1
}
Algorithm pop() {
    if isEmpty() then
        throw EmptyStackException
    else
        t ← t - 1
        return S[t + 1]
}
```

Array-based Stack (cont.)

- The array storing the stack elements may become full.
- A push operation will then throw a FullStackException.
- Limitation of the array-based implementation.
- Not intrinsic to the Stack ADT.

```
Algorithm push(o) {
    if t = S.length - 1 then
        throw FullStackException
    else
        t ← t + 1
        S[t] ← o
}
```

Performance and Limitations

- Performance:
 - Let n be the number of elements in the stack.
 - The space used is O(n).
 - Each operation runs in time O(1).
- Limitations:
 - The maximum size of the stack must be defined a priori and cannot be changed.
 - Trying to push a new element into a full stack causes an implementation-specific exception.

Computing Spans

- We show how to use a stack as an auxiliary data structure in an algorithm.
- Given an an array X, the span S[i] of X[i] is the maximum number of consecutive elements X[j] immediately preceding X[i] and such that X[j] ≤ X[i].
- Spans have applications to financial analysis:
 - E.g., stock at 52-week high.

```
X  6 3 4 5 2
S  1 1 2 3 1
```

Quadratic Algorithm

```
Algorithm spans1(X, n) {
    Input array X of n integers
    Output array S of spans of X
    S ← new array of n integers
    for i ← 0 to n - 1 do
        s ← 1
        while s ≤ i ∧ X[i - s] ≤ X[i] do
            s ← s + 1
            1 + 2 + ... + (n - 1)
        S[i] ← s
        return S
}
```

Algorithm spans1 runs in O(n^2) time.
Computing Spans with a Stack

- We keep in a stack the indices of the elements visible when "looking back".
- We scan the array from left to right.
 - Let \(i \) be the current index.
 - We pop indices from the stack until we find index \(j \) such that \(X[i] < X[j] \).
 - We set \(S[i] \leftarrow i - j \).
 - We push \(i \) onto the stack.

Linear Algorithm

- Each index of the array is pushed into the stack exactly once.
- Is popped from the stack at most once.
- The statements in the while-loop are executed at most \(n \) times.
- Algorithm \(\text{spans2} \) runs in \(O(n) \) time.

Growable Array-based Stack

- In a push operation, when the array is full, instead of throwing an exception, we can replace the array with a larger one.
- How large should the new array be?
 - Incremental strategy: increase the size by a constant \(c \).
 - Doubling strategy: double the size.

Comparison of the Strategies

- We compare the incremental strategy and the doubling strategy by analyzing the total time \(T(n) \) needed to perform a series of \(n \) push operations.
- We assume that we start with an empty stack represented by an array of size 1.
- We call amortized time of a push operation the average time taken by a push over the series of operations, i.e., \(T(n)/n \).

Incremental Strategy Analysis

- We replace the array \(k = n/c \) times.
- The total time \(T(n) \) of a series of \(n \) push operations is proportional to:
 \[
 n + c + 2c + 3c + 4c + \ldots + kc =
 n + c(1 + 2 + 3 + \ldots + k) =
 n + ck(k + 1)/2.
 \]
- Since \(c \) is a constant, \(T(n) \) is \(O(n + k^2) \), i.e., \(O(n^2) \).
- The amortized time of a push operation is \(O(n) \).

Doubling Strategy Analysis

- We replace the array \(k = \log_2 n \) times.
- The total time \(T(n) \) of a series of \(n \) push operations is proportional to:
 \[
 n + 1 + 2 + 4 + 8 + \ldots + 2^k =
 n + 2^k - 1 - 1 = 2n - 1.
 \]
- \(T(n) \) is \(O(n) \).
- The amortized time of a push operation is \(O(1) \).
Stack Interface in Java

- Java interface corresponding to our Stack ADT
- Requires the definition of class EmptyStackException
- Different from the built-in Java class java.util.Stack

```java
public interface Stack {
    public int size();
    public boolean isEmpty();
    public Object top() throws EmptyStackException;
    public void push(Object o);
    public Object pop() throws EmptyStackException;
}
```

Array-based Stack in Java

```java
public class ArrayStack implements Stack {
    // holds the stack elements
    private Object S[];
    // index to top element
    private int top = -1;
    // constructor
    public ArrayStack(int capacity) {
        S = new Object[capacity];
    }
    public Object pop() throws EmptyStackException {
        if (isEmpty())
            throw new EmptyStackException("Empty stack: cannot pop");
        Object temp = S[top];
        // facilitates garbage collection
        S[top] = null;
        top = top - 1;
        return temp;
    }
}
```