
Depth-First Search 9/2/2002 3:16 AM

1

9/2/2002 3:16 AM Depth-First Search 1

Depth-First Search

DB

A

C

E

9/2/2002 3:16 AM Depth-First Search 2

Outline and Reading
Definitions (§6.1)
! Subgraph
! Connectivity
! Spanning trees and forests

Depth-first search (§6.3.1)
! Algorithm
! Example
! Properties
! Analysis

Applications of DFS (§6.5)
! Path finding
! Cycle finding

9/2/2002 3:16 AM Depth-First Search 3

Subgraphs
A subgraph S of a
graph G is a graph
such that
! The edges of S are a

subset of the edges of G
! The edges of S are a

subset of the edges of G

A spanning subgraph of
G is a subgraph that
contains all the vertices
of G

Subgraph

Spanning subgraph

9/2/2002 3:16 AM Depth-First Search 4

Connectivity

A graph is
connected if there is
a path between
every pair of
vertices
A connected
component of a
graph G is a
maximal connected
subgraph of G

Connected graph

Non connected graph with two
connected components

9/2/2002 3:16 AM Depth-First Search 5

Trees and Forests
A (free) tree is an
undirected graph T such
that
! T is connected
! T has no cycles
This definition of tree is

different from the one of
a rooted tree

A forest is an undirected
graph without cycles
The connected
components of a forest
are trees

Tree

Forest

9/2/2002 3:16 AM Depth-First Search 6

Spanning Trees and Forests
A spanning tree of a
connected graph is a
spanning subgraph that is
a tree
A spanning tree is not
unique unless the graph is
a tree
Spanning trees have
applications to the design
of communication
networks
A spanning forest of a
graph is a spanning
subgraph that is a forest

Graph

Spanning tree

Depth-First Search 9/2/2002 3:16 AM

2

9/2/2002 3:16 AM Depth-First Search 7

Depth-First Search
Depth-first search (DFS)
is a general technique
for traversing a graph
A DFS traversal of a
graph G
! Visits all the vertices and

edges of G
! Determines whether G is

connected
! Computes the connected

components of G
! Computes a spanning

forest of G

DFS on a graph with n
vertices and m edges
takes O(n + m) time
DFS can be further
extended to solve other
graph problems
! Find and report a path

between two given
vertices

! Find a cycle in the graph
Depth-first search is to
graphs what Euler tour
is to binary trees

9/2/2002 3:16 AM Depth-First Search 8

DFS Algorithm
The algorithm uses a mechanism
for setting and getting “labels” of
vertices and edges

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G

in the connected component of v
as discovery edges and back edges

setLabel(v, VISITED)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
DFS(G, w)

else
setLabel(e, BACK)

Algorithm DFS(G)
Input graph G
Output labeling of the edges of G

as discovery edges and
back edges

for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

DFS(G, v)

9/2/2002 3:16 AM Depth-First Search 9

Example

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge
back edge

A visited vertex
A unexplored vertex

unexplored edge

9/2/2002 3:16 AM Depth-First Search 10

Example (cont.)

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E

9/2/2002 3:16 AM Depth-First Search 11

DFS and Maze Traversal
The DFS algorithm is
similar to a classic
strategy for exploring
a maze
! We mark each

intersection, corner
and dead end (vertex)
visited

! We mark each corridor
(edge) traversed

! We keep track of the
path back to the
entrance (start vertex)
by means of a rope
(recursion stack)

9/2/2002 3:16 AM Depth-First Search 12

Properties of DFS
Property 1

DFS(G, v) visits all the
vertices and edges in
the connected
component of v

Property 2
The discovery edges
labeled by DFS(G, v)
form a spanning tree of
the connected
component of v

DB

A

C

E

Depth-First Search 9/2/2002 3:16 AM

3

9/2/2002 3:16 AM Depth-First Search 13

Analysis of DFS
Setting/getting a vertex/edge label takes O(1) time
Each vertex is labeled twice
! once as UNEXPLORED
! once as VISITED

Each edge is labeled twice
! once as UNEXPLORED
! once as DISCOVERY or BACK

Method incidentEdges is called once for each vertex
DFS runs in O(n + m) time provided the graph is
represented by the adjacency list structure
! Recall that ΣΣΣΣv deg(v) = 2m

9/2/2002 3:16 AM Depth-First Search 14

Path Finding
We can specialize the DFS
algorithm to find a path
between two given
vertices u and z using the
template method pattern
We call DFS(G, u) with u
as the start vertex
We use a stack S to keep
track of the path between
the start vertex and the
current vertex
As soon as destination
vertex z is encountered,
we return the path as the
contents of the stack

Algorithm pathDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
if v = z

return S.elements()
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
S.push(e)
pathDFS(G, w, z)
S.pop(e)

else
setLabel(e, BACK)

S.pop(v)

9/2/2002 3:16 AM Depth-First Search 15

Cycle Finding
We can specialize the
DFS algorithm to find a
simple cycle using the
template method pattern
We use a stack S to
keep track of the path
between the start vertex
and the current vertex
As soon as a back edge
(v, w) is encountered,
we return the cycle as
the portion of the stack
from the top to vertex w

Algorithm cycleDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
S.push(e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
pathDFS(G, w, z)
S.pop(e)

else
T ← new empty stack
repeat

o ← S.pop()
T.push(o)

until o = w
return T.elements()

S.pop(v)

