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Outline and Reading
Definitions (§6.1)
! Subgraph
! Connectivity
! Spanning trees and forests

Depth-first search (§6.3.1)
! Algorithm
! Example
! Properties
! Analysis

Applications of DFS  (§6.5)
! Path finding
! Cycle finding
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Subgraphs
A subgraph S of a 
graph G is a graph 
such that 
! The edges of S are a 

subset of the edges of G
! The edges of S are a 

subset of the edges of G

A spanning subgraph of 
G is a subgraph that 
contains all the vertices 
of G

Subgraph

Spanning subgraph
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Connectivity

A graph is 
connected if there is 
a path between 
every pair of 
vertices
A connected 
component of a 
graph G is a 
maximal connected 
subgraph of G

Connected graph

Non connected graph with two 
connected components
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Trees and Forests
A (free) tree is an 
undirected graph T such 
that
! T is connected
! T has no cycles
This definition of tree is 

different from the one of 
a rooted tree

A forest is an undirected 
graph without cycles
The connected 
components of a forest 
are trees

Tree

Forest
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Spanning Trees and Forests
A spanning tree of a 
connected graph is a 
spanning subgraph that is 
a tree
A spanning tree is not 
unique unless the graph is 
a tree
Spanning trees have 
applications to the design 
of communication 
networks
A spanning forest of a 
graph is a spanning 
subgraph that is a forest

Graph

Spanning tree
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Depth-First Search
Depth-first search (DFS) 
is a general technique 
for traversing a graph
A DFS traversal of a 
graph G 
! Visits all the vertices and 

edges of G
! Determines whether G is 

connected
! Computes the connected 

components of G
! Computes a spanning 

forest of G

DFS on a graph with n
vertices and m edges 
takes O(n + m ) time
DFS can be further 
extended to solve other 
graph problems
! Find and report a path 

between two given 
vertices

! Find a cycle in the graph
Depth-first search is to 
graphs what Euler tour 
is to binary trees

9/2/2002 3:16 AM Depth-First Search 8

DFS Algorithm
The algorithm uses a mechanism 
for setting and getting “labels” of 
vertices and edges

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G

in the connected component of v
as discovery edges and back edges

setLabel(v, VISITED)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
DFS(G, w)

else
setLabel(e, BACK)

Algorithm DFS(G)
Input graph G
Output labeling of the edges of G

as discovery edges and
back edges

for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

DFS(G, v)
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Example
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discovery edge
back edge

A visited vertex
A unexplored vertex

unexplored edge
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Example (cont.)
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DFS and Maze Traversal 
The DFS algorithm is 
similar to a classic 
strategy for exploring 
a maze
! We mark each 

intersection, corner 
and dead end (vertex) 
visited

! We mark each corridor 
(edge ) traversed

! We keep track of the 
path back to the 
entrance (start vertex) 
by means of a rope 
(recursion stack)
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Properties of DFS
Property 1

DFS(G, v) visits all the 
vertices and edges in 
the connected 
component of v

Property 2
The discovery edges 
labeled by DFS(G, v) 
form a spanning tree of 
the connected 
component of v
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Analysis of DFS
Setting/getting a vertex/edge label takes O(1) time
Each vertex is labeled twice 
! once as UNEXPLORED
! once as VISITED

Each edge is labeled twice
! once as UNEXPLORED
! once as DISCOVERY or BACK

Method incidentEdges is called once for each vertex
DFS runs in O(n + m) time provided the graph is 
represented by the adjacency list structure
! Recall that ΣΣΣΣv deg(v) = 2m
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Path Finding
We can specialize the DFS 
algorithm to find a path 
between two given 
vertices u and z using the 
template method pattern
We call DFS(G, u) with u
as the start vertex
We use a stack S to keep 
track of the path between 
the start vertex and the 
current vertex
As soon as destination 
vertex z is encountered, 
we return the path as the 
contents of the stack 

Algorithm pathDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
if  v = z

return S.elements()
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
S.push(e)
pathDFS(G, w, z)
S.pop(e)

else
setLabel(e, BACK)

S.pop(v)
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Cycle Finding
We can specialize the 
DFS algorithm to find a 
simple cycle using the 
template method pattern
We use a stack S to 
keep track of the path 
between the start vertex 
and the current vertex
As soon as a back edge 
(v, w) is encountered, 
we return the cycle as 
the portion of the stack 
from the top to vertex w

Algorithm cycleDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
S.push(e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
pathDFS(G, w, z)
S.pop(e)

else
T ← new empty stack
repeat

o ← S.pop()
T.push(o)

until o = w
return T.elements()

S.pop(v)


